If it's not what You are looking for type in the equation solver your own equation and let us solve it.
25x^2-4=0
a = 25; b = 0; c = -4;
Δ = b2-4ac
Δ = 02-4·25·(-4)
Δ = 400
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{400}=20$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-20}{2*25}=\frac{-20}{50} =-2/5 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+20}{2*25}=\frac{20}{50} =2/5 $
| -4=d/6 | | -40-(2x+5)=61 | | 4(3a+6)=4(4a+5) | | -6(1-6r)=-2(r+5) | | (q-6)*5=45 | | 7x-3(x-4)=56 | | 2(2p+5)=5(p+2) | | 4x2+12x=23 | | x2/3=8 | | x2-3x=54 | | -3=b÷12 | | 34x+10x=10 | | -x²-12x=11 | | 4^(x-3)=22 | | 18x-x=19 | | 8/17=11/x | | 5a-9=3a+13 | | 11c-35/4=4c+5 | | 4d+200=114 | | 5(x−3)^2+4=129 | | 3x2-18x-48=0 | | 5(x−3)2+4=129 | | 6x+3+x=24 | | 2(3p+6)+5-4p=3p-9+12-5 | | -(3x-5)-(2x-5)=-(3x+4)-(-x+3) | | e/3+6=-10 | | 4x+7=19-4 | | 228+x=336 | | 6u=35-u | | 5n=4=-26 | | 2x=5=-15-3x | | 104-y=250 |