25x2-9=(5x+3)(x-5)

Simple and best practice solution for 25x2-9=(5x+3)(x-5) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 25x2-9=(5x+3)(x-5) equation:



25x^2-9=(5x+3)(x-5)
We move all terms to the left:
25x^2-9-((5x+3)(x-5))=0
We multiply parentheses ..
25x^2-((+5x^2-25x+3x-15))-9=0
We calculate terms in parentheses: -((+5x^2-25x+3x-15)), so:
(+5x^2-25x+3x-15)
We get rid of parentheses
5x^2-25x+3x-15
We add all the numbers together, and all the variables
5x^2-22x-15
Back to the equation:
-(5x^2-22x-15)
We get rid of parentheses
25x^2-5x^2+22x+15-9=0
We add all the numbers together, and all the variables
20x^2+22x+6=0
a = 20; b = 22; c = +6;
Δ = b2-4ac
Δ = 222-4·20·6
Δ = 4
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{4}=2$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(22)-2}{2*20}=\frac{-24}{40} =-3/5 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(22)+2}{2*20}=\frac{-20}{40} =-1/2 $

See similar equations:

| 875=4n/3 | | 2x-3=7-2(x+1) | | 5x+2=3(x-7)-9 | | 100=0.15x | | x*22/5=0 | | (x*22/5)+((x+5)*22/5)=418 | | 2=6m-8 | | 4y-11=8 | | 2x+5+3x=4(x+1) | | x=9=-4 | | 18/x=125 | | 2(x+3=4 | | 3x-4=8-2(x-1) | | 5x/6+1/3=7/12 | | 8/5z=7/25 | | 1/2k=3/4 | | 6(×+3)=5x+8 | | 2m+6m=30 | | -5(m-2)=-10m | | 2x+7×2=10 | | 6(3x+4)=6x | | 11x/4=99 | | X^2-3x-12=-3 | | 8p-3=30 | | 70+40+2x-10=180 | | –8x–5=10 | | (1/3,5)r=√7 | | 2x-100=25 | | x=3.7=-5 | | x+(x+1)^2+(x+2)^2=77 | | 60+0.18x=75+0.15x | | 1/4-3/x=1/2 |

Equations solver categories