If it's not what You are looking for type in the equation solver your own equation and let us solve it.
25z^2=144
We move all terms to the left:
25z^2-(144)=0
a = 25; b = 0; c = -144;
Δ = b2-4ac
Δ = 02-4·25·(-144)
Δ = 14400
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{14400}=120$$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-120}{2*25}=\frac{-120}{50} =-2+2/5 $$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+120}{2*25}=\frac{120}{50} =2+2/5 $
| 4=0.333333333(f-15) | | -4(t-7)-(t+6)=1 | | 2s+3/9=5 | | 2x-2=2x+-31 | | X-6-3(x+8)=0 | | 45+2b=61 | | 3(x+3)=36-2(x+6) | | 1a-1a=0 | | 2/5x-2/7x=8 | | 43+2b=61 | | 4(3+2x)-7=3,5x+14 | | -150=10r | | 36n=15 | | -2=3c+1/7 | | z+4/9=3/4 | | 1.8r+9=—5.7r-6 | | 2x-31=2x+-31 | | g2–4=0 | | 0.18(y-9)+0.06y=0.04y-0.4 | | 2/3x+5=1/3x+2 | | h2=100 | | 2x+31=2x+-31 | | x2=-8 | | 5+2j=-3 | | j2+42=0 | | 2/7x-2/5x=8 | | X^(2)=(x/4)+(48/1) | | 183=8s+3/2s+12 | | s2+39=39 | | 15=40a | | x*2+x/4=90 | | k-434=814 |