26-3p=2/3p+5

Simple and best practice solution for 26-3p=2/3p+5 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 26-3p=2/3p+5 equation:



26-3p=2/3p+5
We move all terms to the left:
26-3p-(2/3p+5)=0
Domain of the equation: 3p+5)!=0
p∈R
We get rid of parentheses
-3p-2/3p-5+26=0
We multiply all the terms by the denominator
-3p*3p-5*3p+26*3p-2=0
Wy multiply elements
-9p^2-15p+78p-2=0
We add all the numbers together, and all the variables
-9p^2+63p-2=0
a = -9; b = 63; c = -2;
Δ = b2-4ac
Δ = 632-4·(-9)·(-2)
Δ = 3897
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{3897}=\sqrt{9*433}=\sqrt{9}*\sqrt{433}=3\sqrt{433}$
$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(63)-3\sqrt{433}}{2*-9}=\frac{-63-3\sqrt{433}}{-18} $
$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(63)+3\sqrt{433}}{2*-9}=\frac{-63+3\sqrt{433}}{-18} $

See similar equations:

| -y=-9y-15 | | –c=10 | | 4x-12=-x+38 | | -4x+5=-5x+7 | | 4x+17=-x+67 | | (3x÷4)+(x÷6)=22 | | 25-x=x | | 2/3x15=1* | | 7x-5x÷2x=3 | | 5x-3=11x-39 | | -13=-1+2x | | 2.7x^2-9x=0 | | y=23-25 | | y=23-22 | | y=23-21 | | 5x+3=3/4(1+x) | | 2^2+192=-40x | | 7y-23=23y-16 | | 7×x-6=15 | | n-0.7=-1.7 | | x3+-15x2+75x+-125=x | | a2–26a+69=0. | | 2*x+7=10 | | x⁴-4x³-x²-16x-12=0 | | r/9-6=19 | | 11x2+88x-63360=0 | | 0,476=0,0505x+0,0476 | | 64=4x-40 | | x^2-180x+360=0 | | 24+(4n+24)+8=0 | | 5x-2/3x=-15 | | -3y+7y=12/5 |

Equations solver categories