If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2600=(2x-6)(x+3)
We move all terms to the left:
2600-((2x-6)(x+3))=0
We multiply parentheses ..
-((+2x^2+6x-6x-18))+2600=0
We calculate terms in parentheses: -((+2x^2+6x-6x-18)), so:We get rid of parentheses
(+2x^2+6x-6x-18)
We get rid of parentheses
2x^2+6x-6x-18
We add all the numbers together, and all the variables
2x^2-18
Back to the equation:
-(2x^2-18)
-2x^2+18+2600=0
We add all the numbers together, and all the variables
-2x^2+2618=0
a = -2; b = 0; c = +2618;
Δ = b2-4ac
Δ = 02-4·(-2)·2618
Δ = 20944
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{20944}=\sqrt{16*1309}=\sqrt{16}*\sqrt{1309}=4\sqrt{1309}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{1309}}{2*-2}=\frac{0-4\sqrt{1309}}{-4} =-\frac{4\sqrt{1309}}{-4} =-\frac{\sqrt{1309}}{-1} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{1309}}{2*-2}=\frac{0+4\sqrt{1309}}{-4} =\frac{4\sqrt{1309}}{-4} =\frac{\sqrt{1309}}{-1} $
| 5x−3=x+17 | | 6|4+7v|=0 | | x+-0.025x=341.25 | | 6x(x+1)=3(x-6) | | 5(3t−4)−(t2+2)−3t(t−4)=0 | | 2h+8-h=-3 | | -5/2+4/5u=-7/3 | | 18=(r/7)+25 | | 4(x-5)=4x+10 | | −18f−34−14f=11 | | 9x+12=51 | | 46(2x)=2(3x8) | | 6r+3=2r+23 | | 6/h−1=3 | | 6(a-5)+4=2(a-5) | | -6+14x+13x+3=180 | | 5(x3)x=4(x3)3 | | 30x^2+15=0 | | (-0.08+x)/5=-0.01 | | 6/h−1=3 | | 52(32x)=x3(x1) | | 1=(f/6)-3 | | a-19=-27 | | (6+y)^2+y^2=16 | | 8/3x+1/3x=4x+20/3+7/3x | | 15x-5=5(x-) | | (121÷x)-11=0 | | -6x-21=9x+6 | | A(x)=500(1.03)x | | 3(2a+5)=36 | | 9(6b+4)=35-8b | | -7(2m+8)+7m=-3(m+7)+5 |