If it's not what You are looking for type in the equation solver your own equation and let us solve it.
27x^2+23x=0
a = 27; b = 23; c = 0;
Δ = b2-4ac
Δ = 232-4·27·0
Δ = 529
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{529}=23$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(23)-23}{2*27}=\frac{-46}{54} =-23/27 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(23)+23}{2*27}=\frac{0}{54} =0 $
| 8j=48 | | x2+85x=0 | | (y+23=) | | x÷4+5=8 | | -x2+13x=0 | | 16x2+x=0 | | -2-13.4x=-8x-(6x+1) | | 17y-2(6y+1)=8 | | 2x+125=180 | | x÷5+5=3+x | | x/90^2=0.1 | | 1,5y+4=10 | | (11x+16)+(12x+7)=180 | | 30=14x-47 | | 3z/7-6=-5 | | .6x^+.35=19 | | 11x+16=180 | | 0.08x+17.95=0.09x+16.05 | | 0=2(-7)+b | | 26-4x-6x=8x | | .6x+.35=19 | | -2x+5x-6=3(x-4)-2 | | 0.42+w=1.9 | | X+x+125=180 | | 0,4z-5=3 | | 4r-9+-2r=39 | | (20/3)f-5=5 | | f/2+4=2 | | -8=2(5)+b | | -6(v+3)+2v+6=8v+7 | | 4.1x-8.47=2.6 | | 200-4q=18q |