28-(3x+4)=2x(x+6)+x

Simple and best practice solution for 28-(3x+4)=2x(x+6)+x equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 28-(3x+4)=2x(x+6)+x equation:



28-(3x+4)=2x(x+6)+x
We move all terms to the left:
28-(3x+4)-(2x(x+6)+x)=0
We get rid of parentheses
-3x-(2x(x+6)+x)-4+28=0
We calculate terms in parentheses: -(2x(x+6)+x), so:
2x(x+6)+x
We add all the numbers together, and all the variables
x+2x(x+6)
We multiply parentheses
2x^2+x+12x
We add all the numbers together, and all the variables
2x^2+13x
Back to the equation:
-(2x^2+13x)
We add all the numbers together, and all the variables
-3x-(2x^2+13x)+24=0
We get rid of parentheses
-2x^2-3x-13x+24=0
We add all the numbers together, and all the variables
-2x^2-16x+24=0
a = -2; b = -16; c = +24;
Δ = b2-4ac
Δ = -162-4·(-2)·24
Δ = 448
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{448}=\sqrt{64*7}=\sqrt{64}*\sqrt{7}=8\sqrt{7}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-16)-8\sqrt{7}}{2*-2}=\frac{16-8\sqrt{7}}{-4} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-16)+8\sqrt{7}}{2*-2}=\frac{16+8\sqrt{7}}{-4} $

See similar equations:

| 0.35x+500=2.85 | | 3/2r=24 | | Y=x30+20 | | Y=(10x)+(-25) | | t-252=260 | | 8(7x+3)=16-16 | | 25+5t=80 | | 171=p-114 | | b-64=547 | | (x-3)(x-11)(x+5)=0 | | -4n-5=15. | | 45=9(z-91) | | r/5-2=1 | | 164=b-574 | | 1000=50t | | -8(4k+4)=3k-32 | | z-499=281 | | 2(x-4)+3(x+1)=15 | | 49k2=64 | | 6-m/2=17 | | 1000+m=4000 | | z499=281 | | -2.3y-1.1=8.1 | | x^2−28x+160=144 | | 5=a/7-9 | | 173=p-719 | | –8+3x=37 | | (x-3)(11-x)(x+5)=0 | | 6=u/3-1 | | y+133=426 | | 500=45•x+35(12-x) | | 4x+6=6x-10=7x+14 |

Equations solver categories