28-11(3n+3)=5(6n+1)-48

Simple and best practice solution for 28-11(3n+3)=5(6n+1)-48 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 28-11(3n+3)=5(6n+1)-48 equation:


Simplifying
28 + -11(3n + 3) = 5(6n + 1) + -48

Reorder the terms:
28 + -11(3 + 3n) = 5(6n + 1) + -48
28 + (3 * -11 + 3n * -11) = 5(6n + 1) + -48
28 + (-33 + -33n) = 5(6n + 1) + -48

Combine like terms: 28 + -33 = -5
-5 + -33n = 5(6n + 1) + -48

Reorder the terms:
-5 + -33n = 5(1 + 6n) + -48
-5 + -33n = (1 * 5 + 6n * 5) + -48
-5 + -33n = (5 + 30n) + -48

Reorder the terms:
-5 + -33n = 5 + -48 + 30n

Combine like terms: 5 + -48 = -43
-5 + -33n = -43 + 30n

Solving
-5 + -33n = -43 + 30n

Solving for variable 'n'.

Move all terms containing n to the left, all other terms to the right.

Add '-30n' to each side of the equation.
-5 + -33n + -30n = -43 + 30n + -30n

Combine like terms: -33n + -30n = -63n
-5 + -63n = -43 + 30n + -30n

Combine like terms: 30n + -30n = 0
-5 + -63n = -43 + 0
-5 + -63n = -43

Add '5' to each side of the equation.
-5 + 5 + -63n = -43 + 5

Combine like terms: -5 + 5 = 0
0 + -63n = -43 + 5
-63n = -43 + 5

Combine like terms: -43 + 5 = -38
-63n = -38

Divide each side by '-63'.
n = 0.6031746032

Simplifying
n = 0.6031746032

See similar equations:

| x+2x+x^2=40 | | 77.6=8(m+3.1) | | 4x2-21/8 | | 7x-41=50 | | 2-5z=9z-1-z | | 10x^2+20x-57=-5 | | f(x)=0.1e(-x)sin(4x^3) | | 10+14z= | | -5(x+7)=4(-8x-2) | | -4=U/4 | | y=1/3(2) | | 2x+5=5(x+1) | | 43-6x=11-10x | | 25.9+(-4.3)= | | n^2+8n-75=0 | | -7=2u | | X^2-3x=x+21 | | 3x-5x+5=x-5+10 | | 9=3s | | -26=a-76 | | 4x+7=-56-5x | | 40=-4x-20 | | (6-v)(5v-8)=0 | | X(x-3)=x+21 | | 10(v+3)-2v=2(4v+3)-7 | | 6(2x-2)-2(3x-5)=0 | | -4y+8(y+5)=28 | | 0.30x+0.05(2-x)=0.10(-19) | | (X+5)+(2x-2)=90 | | 3/2x=27 | | 18-(4n-5)=-9 | | y=1/3(1) |

Equations solver categories