28-4b=(b+1)*(b+1)

Simple and best practice solution for 28-4b=(b+1)*(b+1) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 28-4b=(b+1)*(b+1) equation:



28-4b=(b+1)(b+1)
We move all terms to the left:
28-4b-((b+1)(b+1))=0
We multiply parentheses ..
-((+b^2+b+b+1))-4b+28=0
We calculate terms in parentheses: -((+b^2+b+b+1)), so:
(+b^2+b+b+1)
We get rid of parentheses
b^2+b+b+1
We add all the numbers together, and all the variables
b^2+2b+1
Back to the equation:
-(b^2+2b+1)
We add all the numbers together, and all the variables
-4b-(b^2+2b+1)+28=0
We get rid of parentheses
-b^2-4b-2b-1+28=0
We add all the numbers together, and all the variables
-1b^2-6b+27=0
a = -1; b = -6; c = +27;
Δ = b2-4ac
Δ = -62-4·(-1)·27
Δ = 144
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{144}=12$
$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-6)-12}{2*-1}=\frac{-6}{-2} =+3 $
$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-6)+12}{2*-1}=\frac{18}{-2} =-9 $

See similar equations:

| −59=-3x−32 | | −59=-3b−32 | | 3x+6=498 | | -1+(√28-4b)=b | | X^2-17x+560=0 | | 2x+500=x+800 | | 3p+5=3p+5 | | 4x3144x=0 | | 4b+–11b+–13=15 | | V(x)=4x3-200x2+2400x | | 3p+5=3p-0 | | 3p+5=3p-50 | | 3p+5=3p-17 | | Y^2+(y-1)^2=100 | | 3p+5=3p-16 | | 4x+6=8-3x | | 3p+5=3p-15 | | 3p+5=3p-14 | | 3p+5=3p-20 | | 3p+5=3p-13 | | 3p+5=3p-12 | | 3p+5=3p-11 | | 3p+5=3p-10 | | 3p+5=3p-9 | | 3p+5=3p-7 | | 3p+5=3p-6 | | 3p+5=3p-4 | | 3p+5=3p-2 | | 3p+5=3p-1 | | 3p+5=3p-(3p+5) | | 3p+5=3p-3p | | 3p+5=3p-8p |

Equations solver categories