282+b2=532

Simple and best practice solution for 282+b2=532 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 282+b2=532 equation:



282+b2=532
We move all terms to the left:
282+b2-(532)=0
We add all the numbers together, and all the variables
b^2-250=0
a = 1; b = 0; c = -250;
Δ = b2-4ac
Δ = 02-4·1·(-250)
Δ = 1000
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{1000}=\sqrt{100*10}=\sqrt{100}*\sqrt{10}=10\sqrt{10}$
$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-10\sqrt{10}}{2*1}=\frac{0-10\sqrt{10}}{2} =-\frac{10\sqrt{10}}{2} =-5\sqrt{10} $
$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+10\sqrt{10}}{2*1}=\frac{0+10\sqrt{10}}{2} =\frac{10\sqrt{10}}{2} =5\sqrt{10} $

See similar equations:

| x+3x=(x+10)=180 | | 34=3e-7 | | 3x+5+25=180 | | 1x+3=-4x-12 | | x+342=678 | | 10x+3(6x+2)=3(2x+5)+13 | | 2z-6=5+3(z+6) | | (2)(2+4)=(3)(3+2x+5) | | y/6-17=4 | | 42+6y=84 | | –w=w−6 | | -2x^2+24x-40=24 | | 7r+47=12 | | -2x^2+24x-40=0 | | 5v-8=17 | | x5-4=10 | | 7.50r-8=52 | | –2d+10=8d | | 6x-16x=-10 | | 0=5t−5t | | 10u=1+10u | | (3x+50)+70=180 | | 2(2x-3)+7=3x+4 | | 6x-4(4x)=-10 | | r/7+40=9 | | =452x-21= | | (a+1)(a−5)= | | -20x=-x-212 | | 0.9+7=f | | 4x-5(-3x+3)=23 | | 8x+2+3=6x+2+4 | | (3x-10)+(54)+(5x+4)+(4x+4)+(144-4x)=360 |

Equations solver categories