If it's not what You are looking for type in the equation solver your own equation and let us solve it.
289=y2
We move all terms to the left:
289-(y2)=0
We add all the numbers together, and all the variables
-1y^2+289=0
a = -1; b = 0; c = +289;
Δ = b2-4ac
Δ = 02-4·(-1)·289
Δ = 1156
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1156}=34$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-34}{2*-1}=\frac{-34}{-2} =+17 $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+34}{2*-1}=\frac{34}{-2} =-17 $
| 73=3y | | -16+5x=3x-4x-32 | | 5x+17-3x+17=-6 | | -2(4x+1)=74 | | -5(4+7x)+7=-118 | | -6s=-8s+6 | | -2(6a-2)=2(-a-3) | | |9+x|=6 | | 5x+1+12=17x+1 | | 2(1x+2)+4=16 | | -12x-78=-8x+62 | | x÷16=17 | | 19z-12z-5z-16z=16 | | 5+7k=40 | | 4x+7=-(5x-20) | | -42=(-6)*x | | t/3+13=15 | | 7(b-5)=-63 | | 6+3x=12x-10 | | 64x^2+27=0 | | 10+8c=-10+10c | | 3(1x+4)=1x+22 | | -4(k+1)=-60 | | 7c-21=7 | | 3x-5(2x-12)=11 | | -8(-8a-6)=-2(3a+11) | | -4(4x+2)=9+x | | t+-9=-1 | | A=1x5 | | 14+4n=4n=7(n+6) | | p+-17=-22 | | 5a=3a+2 |