If it's not what You are looking for type in the equation solver your own equation and let us solve it.
28m^2+8m=0
a = 28; b = 8; c = 0;
Δ = b2-4ac
Δ = 82-4·28·0
Δ = 64
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{64}=8$$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(8)-8}{2*28}=\frac{-16}{56} =-2/7 $$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(8)+8}{2*28}=\frac{0}{56} =0 $
| 6h2-3h=0 | | 180=5(4w-4)+3(8w+8) | | 18c2+6c=0 | | 7/2x-3=14+3x/2 | | 5w2-5w=0 | | 7x=(8x+120)=180 | | 7=2x=2x-7 | | 14/4x-3x=14+6 | | 14/4x-6=14+3x | | 3k2-6k=0 | | 96=4(5v+3)-v-8 | | 42z2+14z=0 | | 6x^2-9x=150 | | 3D+18=30-4d | | (2w^2)+6=-7w | | 7u+6+2(7u-6)=9 | | 2/3a-12/3a=-3-7 | | 8+4y=3+3y | | -(x)+1=x | | x+3x=212 | | -20=-4×-6x | | k=5.5 | | 1/4e=1/2 | | 14e=12 | | Y=-0.15x+1.35 | | (1/3)n+3n=40 | | 12x^2+6x=216 | | 8v-5=35 | | 20x^2-9x+18=0 | | 1/3n+3n=40 | | 7-6u=25 | | 5^x+15=86 |