If it's not what You are looking for type in the equation solver your own equation and let us solve it.
28x^2+45x+18=0
a = 28; b = 45; c = +18;
Δ = b2-4ac
Δ = 452-4·28·18
Δ = 9
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{9}=3$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(45)-3}{2*28}=\frac{-48}{56} =-6/7 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(45)+3}{2*28}=\frac{-42}{56} =-3/4 $
| 9x-720=180 | | x-1/5=x+3/7 | | 3x−44x−3=5 | | 5x-14=+2x+21 | | 8X+6=+5x+18 | | 1/2x((3/2)-(2/3))+24=4/18 | | 171=97=v | | 6x-(x-12)=4x-(x-28) | | 3m+2m=6m | | 2(x-5)=5x-7 | | 2(x-5)=5x-7 * | | 4a+12=2(a-8) | | 9=+7x=4x-9 | | 25*30=x*25 | | 3(5w-4)12=66 | | 2*(x-10)=32 | | 2(8x+5)15=82 | | 7(9t-6)3=101 | | -3x2+1=3x−2 | | 5(x+8)7=63 | | 4(2x-3)5=33 | | 16−2t=t+9+ | | 20+5+3x=5x+7 | | 24x+32-2x=20.9x+30+×-2 | | 3n+6=20 | | x-10+76=180 | | -17-y=-39 | | 5(m-2)=70 | | 37+6x=85 | | 6x-31=2x+43 | | 4x+17=5x-13 | | x2(x-5)=5x-7 |