If it's not what You are looking for type in the equation solver your own equation and let us solve it.
294=x(6x+x)
We move all terms to the left:
294-(x(6x+x))=0
We add all the numbers together, and all the variables
-(x(+7x))+294=0
We calculate terms in parentheses: -(x(+7x)), so:a = -7; b = 0; c = +294;
x(+7x)
We multiply parentheses
7x^2
Back to the equation:
-(7x^2)
Δ = b2-4ac
Δ = 02-4·(-7)·294
Δ = 8232
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{8232}=\sqrt{196*42}=\sqrt{196}*\sqrt{42}=14\sqrt{42}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-14\sqrt{42}}{2*-7}=\frac{0-14\sqrt{42}}{-14} =-\frac{14\sqrt{42}}{-14} =-\frac{\sqrt{42}}{-1} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+14\sqrt{42}}{2*-7}=\frac{0+14\sqrt{42}}{-14} =\frac{14\sqrt{42}}{-14} =\frac{\sqrt{42}}{-1} $
| 110=6x+10+4x | | 9+8b=197 | | x(2x+5)=592 | | 6x+10+4x=110 | | 8x=44−3x | | B+(140-a)=160 | | 12=144-4n | | 12=144-n+4 | | 4a=108 | | 9x+8=197 | | 75-2x=180 | | Y-(-4y+3)=7 | | 4+65x=52x=16 | | 6=3y-1 | | 4=3y-1 | | 4+3y-1=180 | | 3-8=6x-2 | | (0.10)(0.5)+0.35=0.15(g+0.5) | | (3+y)(8-y)=28 | | 8x+4+15-5x=-1 | | 2/4=50/x | | 4w-1=1-2w | | 12x-4(x+4)=32 | | 60+50.45x=57.59x | | 4(2x+1)+5(3-x)=-1 | | 2(3x-6)=5(2-x) | | (40y^2+10y)/5y=0 | | 3(x-4)+5(x+6)=12 | | 4x-49=101 | | a+0.25=1.33 | | 15x-40=3x-64 | | -12=7(x-7) |