If it's not what You are looking for type in the equation solver your own equation and let us solve it.
29540=1543(n*14)(n*21)
We move all terms to the left:
29540-(1543(n*14)(n*21))=0
We add all the numbers together, and all the variables
-(1543(+n*14)(+n*21))+29540=0
We multiply parentheses ..
-(1543(+294n^2))+29540=0
We calculate terms in parentheses: -(1543(+294n^2)), so:a = -453642; b = 0; c = +29540;
1543(+294n^2)
We multiply parentheses
453642n^2
Back to the equation:
-(453642n^2)
Δ = b2-4ac
Δ = 02-4·(-453642)·29540
Δ = 53602338720
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{53602338720}=\sqrt{784*68370330}=\sqrt{784}*\sqrt{68370330}=28\sqrt{68370330}$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-28\sqrt{68370330}}{2*-453642}=\frac{0-28\sqrt{68370330}}{-907284} =-\frac{28\sqrt{68370330}}{-907284} =-\frac{\sqrt{68370330}}{-32403} $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+28\sqrt{68370330}}{2*-453642}=\frac{0+28\sqrt{68370330}}{-907284} =\frac{28\sqrt{68370330}}{-907284} =\frac{\sqrt{68370330}}{-32403} $
| 29540=1543(14*n) | | (t-2)(t+5)=t-2(t+5) | | 6(x-3)=3(3x+2) | | x/3+1=-4 | | 2x+4=3×+7 | | 3(2x+5)=-39+24 | | 5=b+13/4 | | 3x+1/6=4x+5/6 | | (x^2-100)/(4x^2)=0 | | 5=b=13/4 | | 5|9z=15 | | 4s-58=2s | | 2.95/(x-4)=56 | | 2t+14=7t-26 | | 2.95/x=54 | | H=-2t2+9t+1 | | -3x^2+12x+231=0 | | n-6=56 | | 4t-68=3t-95 | | 700=6000+4.75*a | | 2+z/3=5 | | 5^6x-7=625 | | 8^(x-1)=16^3x | | 2.25/x=54 | | 2c-63=c-20 | | 1=r-4 | | 1+2b—13=12-4b-2b | | 3x-3=8x-13 | | A+17=2a+12 | | 3x2-10x=0 | | 5a-37=a+19 | | (5x-4)^3=27 |