29=0.5n(n+1)

Simple and best practice solution for 29=0.5n(n+1) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 29=0.5n(n+1) equation:



29=0.5n(n+1)
We move all terms to the left:
29-(0.5n(n+1))=0
We calculate terms in parentheses: -(0.5n(n+1)), so:
0.5n(n+1)
We multiply parentheses
0n^2+0n
We add all the numbers together, and all the variables
n^2+n
Back to the equation:
-(n^2+n)
We get rid of parentheses
-n^2-n+29=0
We add all the numbers together, and all the variables
-1n^2-1n+29=0
a = -1; b = -1; c = +29;
Δ = b2-4ac
Δ = -12-4·(-1)·29
Δ = 117
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{117}=\sqrt{9*13}=\sqrt{9}*\sqrt{13}=3\sqrt{13}$
$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-1)-3\sqrt{13}}{2*-1}=\frac{1-3\sqrt{13}}{-2} $
$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-1)+3\sqrt{13}}{2*-1}=\frac{1+3\sqrt{13}}{-2} $

See similar equations:

| 2x+1+3x+3=90 | | 15x+4=10x-31 | | 3x-(x+7)=4 | | 6=-4/5f | | -7x+37=x-3(7x+5) | | -3(4-4n)=-8(2-2n) | | 7x2+4x+10=0 | | 2(x+5)=+8 | | 4(1-4x)+2x=24+6x | | (x)+(x+4)+(2(x+4)+2)=180 | | 2^x-3=5^2x-4 | | 7x-15=12x+16 | | 3x-x-7=4 | | -2(4x—1)-3x+5=-26 | | k-79=36 | | 8-8(3-n)=8(n-2) | | 8+x/8=x=3/8 | | -6x-12=-10 | | 414=3c | | 7x=+11-31 | | 18b+3=39 | | v^2+3=28 | | 7x=11+31x | | v-10/3=3 | | v/2-2=-12 | | 5-2x=(6+5x) | | -14=-10+n/4 | | 8=h/10 | | -20=6+2n | | v–4+–12=–14 | | 1d+13=95 | | v–4+ –12=–14 |

Equations solver categories