2=1.5+t(30-4.9t)

Simple and best practice solution for 2=1.5+t(30-4.9t) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 2=1.5+t(30-4.9t) equation:



2=1.5+t(30-4.9t)
We move all terms to the left:
2-(1.5+t(30-4.9t))=0
We add all the numbers together, and all the variables
-(1.5+t(-4.9t+30))+2=0
We calculate terms in parentheses: -(1.5+t(-4.9t+30)), so:
1.5+t(-4.9t+30)
determiningTheFunctionDomain t(-4.9t+30)+1.5
We multiply parentheses
-4t^2+30t+1.5
Back to the equation:
-(-4t^2+30t+1.5)
We get rid of parentheses
4t^2-30t-1.5+2=0
We add all the numbers together, and all the variables
4t^2-30t+0.5=0
a = 4; b = -30; c = +0.5;
Δ = b2-4ac
Δ = -302-4·4·0.5
Δ = 892
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{892}=\sqrt{4*223}=\sqrt{4}*\sqrt{223}=2\sqrt{223}$
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-30)-2\sqrt{223}}{2*4}=\frac{30-2\sqrt{223}}{8} $
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-30)+2\sqrt{223}}{2*4}=\frac{30+2\sqrt{223}}{8} $

See similar equations:

| -4/3x-18=-4 | | 17+5x+5=37 | | -3/4x+9=4 | | 2/3(6x3)=4x+2 | | 10x-4x+128=10x+48 | | 12-3f=6 | | 8y=32,768 | | 16-4x=2x+11-5x | | -(4-5d)=1 | | 3x÷-8=3 | | 30=0.5(x)(x-4) | | -(4y-20)-19=-y-17 | | 21/7/(15a)=(0.8) | | 9x+1/4=0 | | 2(1+6x)=4x+10 | | 3x+1=4x+-4 | | -5x-37=4(-2x-7) | | 7x+11=2x+4 | | 3n-8=36 | | 3.9g+9=1.9g+21 | | 16x+48=42+36 | | 8(7-7k)=-40-8k | | 203=-v+84 | | -x+179=48 | | -35+6r=-7(r-8) | | 6.4g+4=2.4g+20 | | 46-y=260 | | 5.2g+10=3.2g+14 | | 10x+24=12x | | 24-8n=-6n+4(8n+6) | | -31+4n=-7(-2n+3) | | 8-x=1/5(3-x)-1/2(7x-4) |

Equations solver categories