If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2=140/2+12-4x^2
We move all terms to the left:
2-(140/2+12-4x^2)=0
Domain of the equation: 2+12-4x^2)!=0We get rid of parentheses
We move all terms containing x to the left, all other terms to the right
-4x^2)!=-14
x!=-14/1
x!=-14
x∈R
4x^2-12+2-140/2=0
We multiply all the terms by the denominator
4x^2*2-140-12*2+2*2=0
We add all the numbers together, and all the variables
4x^2*2-160=0
Wy multiply elements
8x^2-160=0
a = 8; b = 0; c = -160;
Δ = b2-4ac
Δ = 02-4·8·(-160)
Δ = 5120
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{5120}=\sqrt{1024*5}=\sqrt{1024}*\sqrt{5}=32\sqrt{5}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-32\sqrt{5}}{2*8}=\frac{0-32\sqrt{5}}{16} =-\frac{32\sqrt{5}}{16} =-2\sqrt{5} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+32\sqrt{5}}{2*8}=\frac{0+32\sqrt{5}}{16} =\frac{32\sqrt{5}}{16} =2\sqrt{5} $
| x14=36 | | 3x+x/2=112 | | N-10+9n-3=17 | | 9(x-8)=3(16+x)+18 | | 3x+x.2=56 | | 10(x+3)=7(2x+6) | | -m+4(2m+3)=15 | | v+12/5=-2 | | 7x5(x-2)=12 | | -4/5y-3=1/3y-6/5 | | -5(-3w+2)-3w=2(w-1)-4 | | |2x+13|=-1 | | -4x-38=-6(x+7) | | 4x/2-7/2=18 | | 4t+3+2t-5t=5+4 | | 5(y+4)-7y=12 | | 7=r/10+5 | | -12(0.5)+h=-8.5 | | 4/x-7/3x=2/5 | | 9=2x+6x2 | | (2a-3)/6=2a/3+1/2= | | 12r-8-12=4 | | (2a-3)/6=2a/3+1/2 | | 10m=8.26 | | 10x+7x=-8x-8(x-7) | | 5x+3-11=4x-4 | | 40=7x-(x-4) | | 3(x-4)+5=60 | | 3.5+10m=8.26 | | 5x+25(x-3)=315 | | 6.9s-2=5.9s-2 | | x+4-2=3/7x=7 |