If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2X^2+9X+10=0
a = 2; b = 9; c = +10;
Δ = b2-4ac
Δ = 92-4·2·10
Δ = 1
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1}=1$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(9)-1}{2*2}=\frac{-10}{4} =-2+1/2 $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(9)+1}{2*2}=\frac{-8}{4} =-2 $
| h-2.9=4.9 | | p2/3+p1/2=234 | | 5=-4+27/n | | 6g-1=2g-1 | | p(2/3+1/2)=234 | | -w^2+11w-28=0 | | p+(p2/3)+(p1/2)=234 | | 34-6=7-9x | | p-18=0.85p | | 5x=4=2x+17 | | 2(x-1)=5x-11 | | 6-8x=7x-9x+10 | | y/5-16=29 | | -2(x+4)=-4x-10 | | 16=(16/q)+q | | 78=2w+6 | | 2x+6=4x=28 | | 21=u/3+16 | | 8x+5x-68=34-4x | | 5-k+12=6 | | 4(-5=p)=12 | | -2x+4=-5x-5 | | 7x+24=11x+4 | | 5x+6x-48=80-5x | | g/7-9=14 | | 40-7v=-275 | | 40-24f=-824 | | 6r+12=36 | | 7*(5x-2)=91 | | 4x-6=-2x | | 93=7v+9 | | 7(5x-2)=91 |