If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2a^2+19a+45=0
a = 2; b = 19; c = +45;
Δ = b2-4ac
Δ = 192-4·2·45
Δ = 1
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1}=1$$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(19)-1}{2*2}=\frac{-20}{4} =-5 $$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(19)+1}{2*2}=\frac{-18}{4} =-4+1/2 $
| d/4+12=16 | | x/7+4=4/7 | | 2/5(2y+5)+1/3(4y-1)=9 | | 35=5(j-90) | | 2(x+2)^(5/2)+6=70 | | 35=5(j−90) | | 6(11)=6(7b-3) | | 4x+1x+30=180 | | 5x^2-9=30 | | 4x^2-3=12 | | (9+p)2=45 | | 497=36+n | | 10/x-30=400 | | n/3+10=13 | | 2x^2+0,5=5 | | 7.4=-1p-2.8 | | u/3+8=10 | | 2x^2−8=0 | | u3 + 8 = 10 | | 2(-2y-1)+2y=7 | | h=-16(1.5)^2+24(1.5) | | .90x=52 | | 2(x+12)-2x=3(x-6) | | h=-16(1.2)^2+24(1.2) | | 3h-10=2 | | h=-16(0.9)^2+24(0.9) | | h=-16(0.6)^2+24(0.6) | | h=-16(0.3)^2+24(0.3) | | (-3x+1)(x-9)=0 | | h=-16(0)^2+24(0) | | 5/x=2/(x-3) | | (3x+1)(x-9)=0 |