If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2a^2+9a-200=0
a = 2; b = 9; c = -200;
Δ = b2-4ac
Δ = 92-4·2·(-200)
Δ = 1681
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1681}=41$$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(9)-41}{2*2}=\frac{-50}{4} =-12+1/2 $$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(9)+41}{2*2}=\frac{32}{4} =8 $
| 0.88(n-10)=64 | | 5b+(-5)=20 | | x/7-8/7=6 | | x+1.10=7 | | 4x^2+4x-15=20-19x | | 6(x+3)=7+6x | | -7w+16=-4(w-7) | | 2/3(3x-6)=-8 | | 2/3x+5/3x=5/3+5/3 | | 1/2(x+1)-x=1 | | 49-7x=3x-11 | | (3h+7)/5=h | | 3x-15=3(45)-15 | | 4p-9.2=-2.6+5.3 | | X+0.15x=110 | | 3x+5=18+5 | | 5x+12=-43 | | 21-7n=48-4n | | 1.15x=3.45 | | 1/4×8x×1/4+1/4=16 | | -8p-4(3-4p)=3(p-3)-43 | | -6b/19=18/19 | | 53.7=s-11.2 | | 10x-15=6x+18 | | 6x-1+34+75=180 | | x/91=4/39 | | 2(7x+6)+8(x+7)=288 | | x+1/1/5=7 | | 4.6x-7.16=7.1 | | 4.2=7m | | 512=x(20-2x)(18-x) | | 116=n-82 |