2b+b+(1/2b-2)=180

Simple and best practice solution for 2b+b+(1/2b-2)=180 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 2b+b+(1/2b-2)=180 equation:



2b+b+(1/2b-2)=180
We move all terms to the left:
2b+b+(1/2b-2)-(180)=0
Domain of the equation: 2b-2)!=0
b∈R
We add all the numbers together, and all the variables
3b+(1/2b-2)-180=0
We get rid of parentheses
3b+1/2b-2-180=0
We multiply all the terms by the denominator
3b*2b-2*2b-180*2b+1=0
Wy multiply elements
6b^2-4b-360b+1=0
We add all the numbers together, and all the variables
6b^2-364b+1=0
a = 6; b = -364; c = +1;
Δ = b2-4ac
Δ = -3642-4·6·1
Δ = 132472
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{132472}=\sqrt{4*33118}=\sqrt{4}*\sqrt{33118}=2\sqrt{33118}$
$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-364)-2\sqrt{33118}}{2*6}=\frac{364-2\sqrt{33118}}{12} $
$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-364)+2\sqrt{33118}}{2*6}=\frac{364+2\sqrt{33118}}{12} $

See similar equations:

| (1/5x)+(1/4)=1 | | 1/5x+1/4=1 | | 55=31^x | | -8(w+3)=-3w+6 | | -4f+20=-2f-18 | | 10-(3x+6)=10 | | 3/4x+2=5/4-6 | | 3u-31=-2(u-2) | | 20y+20=17y-20+1 | | X/x-4=16/x^2-4x | | -8+8q=9q | | -15x^2=6x-5x^2+7 | | x^2-32x+512=0 | | 3x+4=6x2 | | 3k-k-k=15 | | 19r+14=5+16r | | -19+15-2n=18-4n | | 12x-10x-x+x-x=8 | | 17=5+2x/3 | | -20+8j=9j | | 12x–10x-x+x-x=8 | | x^-0.75=1/16 | | B+8=-8b-19 | | 11x-30+102=180 | | 20m+20-5m=-20+17m | | 2x/5+8=2 | | -20p+4=-19p+19 | | 12x–10x–x+x–x=8 | | 6x/3-10=6 | | -5s+-5s+17s=-7 | | 3x+x=6x+12+2 | | 3=1x/2-7 |

Equations solver categories