If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2c(c-8)=30
We move all terms to the left:
2c(c-8)-(30)=0
We multiply parentheses
2c^2-16c-30=0
a = 2; b = -16; c = -30;
Δ = b2-4ac
Δ = -162-4·2·(-30)
Δ = 496
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{496}=\sqrt{16*31}=\sqrt{16}*\sqrt{31}=4\sqrt{31}$$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-16)-4\sqrt{31}}{2*2}=\frac{16-4\sqrt{31}}{4} $$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-16)+4\sqrt{31}}{2*2}=\frac{16+4\sqrt{31}}{4} $
| X2º=6x5 | | a2+16=25 | | 2x+4x-7=34 | | x+209=209 | | 11a^2-6=0 | | 5x+4x+3x=12x | | 9x-27=6x-66 | | 8x+26=8.33333 | | -8x-14=7(-2-4x)+4 | | (7/10)x=-(5/8) | | 8x+26=25/3 | | 18x-7=29 | | 7a^2+9a-24=0 | | 8x+26=12.5 | | X^2+(x^2+1)+(x^2+4)-50=0 | | 8x+26=25/2 | | x+54=226 | | M=(5x+23) | | 4y=47 | | 5^6r=12 | | 4/13=15/m-3 | | 6y-30=y+15 | | x+22x+34x+2.8=14 | | 1/5b=6+16 | | 9x-8+19=18x-13 | | 6(b+2=30 | | 12/3t=8 | | X^2+(x+1)^2+(x+2)^2=50 | | 20t+4.9t^2=-100 | | 4x-3-6x-12=35 | | 2/1 r−3=3(4−23 r) | | x^2+3/2x=1/2 |