2c-(c-5)=c(2c-5)-5

Simple and best practice solution for 2c-(c-5)=c(2c-5)-5 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 2c-(c-5)=c(2c-5)-5 equation:



2c-(c-5)=c(2c-5)-5
We move all terms to the left:
2c-(c-5)-(c(2c-5)-5)=0
We get rid of parentheses
2c-c-(c(2c-5)-5)+5=0
We calculate terms in parentheses: -(c(2c-5)-5), so:
c(2c-5)-5
We multiply parentheses
2c^2-5c-5
Back to the equation:
-(2c^2-5c-5)
We add all the numbers together, and all the variables
c-(2c^2-5c-5)+5=0
We get rid of parentheses
-2c^2+c+5c+5+5=0
We add all the numbers together, and all the variables
-2c^2+6c+10=0
a = -2; b = 6; c = +10;
Δ = b2-4ac
Δ = 62-4·(-2)·10
Δ = 116
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{116}=\sqrt{4*29}=\sqrt{4}*\sqrt{29}=2\sqrt{29}$
$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(6)-2\sqrt{29}}{2*-2}=\frac{-6-2\sqrt{29}}{-4} $
$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(6)+2\sqrt{29}}{2*-2}=\frac{-6+2\sqrt{29}}{-4} $

See similar equations:

| x+12-x+1=1/12 | | 2c-5=(2c-5)-5 | | 3(u+9)=-3u+9 | | 3c-5=(3c-5)-5 | | (2r-6/4)-8=50 | | x+2/x+1=1/12 | | —8x-2•6x-4= | | p=2(2)+2(96) | | 11+3x+7=6x+5-3x | | 5x+2x=(5x+40) | | x+23/6=-8/3 | | x+1-x+2=12 | | 11x^2+20x=0 | | 14=27-y | | −108π=6πj−108π=6πj. | | (1/2x+1/10x+1/20x)-x=35,000 | | -x+2/x+1=1/12 | | O.4x+2=1.2x-6 | | P=75p-6 | | 3/2(4x-1)-3x=5/4-(x+2) | | 2.2x-9.12=2.1 | | (25-x)^3=64^3 | | (x+1)(x+3)(x+2)(x+4)-8=0 | | 680=2(2x+40)+2x | | 8x+7=9+73 | | (x+5)(x)(x)=870 | | 5x+8x-3x-5=55 | | (7*e^2)-9=15 | | m+1/5=m/6 | | 8x-3=9x+7×= | | 9(x+10)=6(x-16) | | 4x+4.6=9.4 |

Equations solver categories