2c-3=2(6-c)7c

Simple and best practice solution for 2c-3=2(6-c)7c equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 2c-3=2(6-c)7c equation:



2c-3=2(6-c)7c
We move all terms to the left:
2c-3-(2(6-c)7c)=0
We add all the numbers together, and all the variables
2c-(2(-1c+6)7c)-3=0
We calculate terms in parentheses: -(2(-1c+6)7c), so:
2(-1c+6)7c
We multiply parentheses
-14c^2+84c
Back to the equation:
-(-14c^2+84c)
We get rid of parentheses
14c^2-84c+2c-3=0
We add all the numbers together, and all the variables
14c^2-82c-3=0
a = 14; b = -82; c = -3;
Δ = b2-4ac
Δ = -822-4·14·(-3)
Δ = 6892
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{6892}=\sqrt{4*1723}=\sqrt{4}*\sqrt{1723}=2\sqrt{1723}$
$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-82)-2\sqrt{1723}}{2*14}=\frac{82-2\sqrt{1723}}{28} $
$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-82)+2\sqrt{1723}}{2*14}=\frac{82+2\sqrt{1723}}{28} $

See similar equations:

| 39+5y-1=16y-11-4y | | 7⁄8(a-8)=14 | | 9x+32=3x+2 | | 16t²+95t+6=0 | | 27=-4x+3x | | 5xx=180 | | 27+8a=-7(6a-2) | | 29+3y-8=13y-9-5y | | 3m=m10 | | 37+4y-10=14y-9-4y | | 24=8(6v+3) | | 3(x-4)-5(x-3)=x-2-(3x-5) | | 9k+6+5=22 | | 5a+3=12 | | 9z-8z=-15 | | 5x+11=79 | | n+(4n+6)=71 | | x=5×5.891304+4 | | v-3=13 | | h-32/9=5 | | 18+m=12 | | 5a-4=15 | | 364x=64x=400x | | 0.04x+4=18 | | j+17/3=9 | | 7x+4+17=8 | | x(.30)=210 | | 3=y/3-5 | | 5=g+6/4 | | 7(h-90)=21 | | 11b-b-4b=12 | | 20m-4m+m-11m-5m=14 |

Equations solver categories