If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2c^2+16c+24=0
a = 2; b = 16; c = +24;
Δ = b2-4ac
Δ = 162-4·2·24
Δ = 64
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{64}=8$$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(16)-8}{2*2}=\frac{-24}{4} =-6 $$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(16)+8}{2*2}=\frac{-8}{4} =-2 $
| a+6=2(3a-2) | | 6x−12.85=5x+12.15 | | 88-x=-35 | | 260=11-u | | 45/84=n/15 | | 2(x+6)=-5x-16 | | 2t-3.4=4.6 | | 5n=12n-n | | x(35x)=300 | | r−18.7=−2.8 | | -7h+2=23 | | 3x+2+3x-12=90 | | 2×+3y=19 | | 0.5x−5=0.18x+3 | | 15+130+y=180 | | 6x+5=8x–3 | | 8x-12=4(.5-6) | | 4m-1=28 | | 15+130+x=180 | | -0.6+0.5p+0.8-0.6=-0.2(8+8p)-3(0.1-0.4p) | | 10n^2-32n+22=0 | | 3h-10=-16 | | 7(d-4)+12=5 | | 6x+5x+x=4x+12 | | 8d+8=2(4d-5) | | 21/14=14/x | | -9+4(1+6b)=-18 | | 4y-3=6y-2 | | 2x+8-22x=2x | | 7x+39=9x+10 | | 5z+2z-z=24 | | .020x(Y)=31.17 |