If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2c^2+5c+3=0
a = 2; b = 5; c = +3;
Δ = b2-4ac
Δ = 52-4·2·3
Δ = 1
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1}=1$$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(5)-1}{2*2}=\frac{-6}{4} =-1+1/2 $$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(5)+1}{2*2}=\frac{-4}{4} =-1 $
| k/5-2=8 | | 6=2x/7 | | 25x2+4=0 | | 0.25x+2.5=5.5 | | 13x-8=10x+4 | | 18-6k=3k | | 8=12+2t | | w/7+4=11 | | 73+56+8x+3=180 | | 6h+3=11-2h | | 15+2r=26 | | (u-5)/8=5/6 | | -6x-9=-12x+9 | | x+2+53/2=6x | | 7^9x=20 | | v+39=78 | | x+2+53=6x | | 5/3=(v-4)/4 | | 10a+1=-19 | | 5/2x+1/2x=221/2x+9/2x | | 10a+1=19 | | (y-2)/8=5/6 | | (x+2)+8=4x-2 | | 2y-8+3=y | | 8n=10n | | 5(10)+10y=500 | | -9x^2+11x-10=0 | | X=-48-6y | | 50+90+50+x=180 | | A(A)+6x6=15x15 | | p-40=55 | | 67=x+17 |