If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2f(8f+3)=0
We multiply parentheses
16f^2+6f=0
a = 16; b = 6; c = 0;
Δ = b2-4ac
Δ = 62-4·16·0
Δ = 36
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$f_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$f_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{36}=6$$f_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(6)-6}{2*16}=\frac{-12}{32} =-3/8 $$f_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(6)+6}{2*16}=\frac{0}{32} =0 $
| 17/11=u/12 | | 8(m–5)+3= | | 8x+7=2x+11 | | 5x+3=6x+14 | | x^2-5=6x | | x-5/3=5-3x | | 3x/4-21x/32=-8/8 | | 8+6c=5c | | 5x+2x-12=58 | | 5x-2x+3-5=7 | | (9x-1)(7x+3)=0 | | 13w−10w−w=14 | | 10+6v=8v | | (x+40)=(3x-17)(2x-5) | | 6x-6=x-7 | | 1/2v-5/3=-7/5 | | +6)-3-1132x=-4 | | 9-2u=u | | 5x+3=-6x=14 | | 8+2/3x=5/6 | | 63+7v=14v | | 18x-7=16x+1 | | 14v−13v=9 | | -n=4- | | 4y+4y+2=10 | | 317n−4=31 | | 12+38=w | | 3(3x+6)=6x+33 | | 2-x+4/2=1 | | 5(x-8)=75 | | 2x=6-x=2+3x-8 | | 10(v-3)=-10(v-9) |