If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2h^2+8h=64
We move all terms to the left:
2h^2+8h-(64)=0
a = 2; b = 8; c = -64;
Δ = b2-4ac
Δ = 82-4·2·(-64)
Δ = 576
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$h_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$h_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{576}=24$$h_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(8)-24}{2*2}=\frac{-32}{4} =-8 $$h_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(8)+24}{2*2}=\frac{16}{4} =4 $
| 5x^+16x+12=0 | | 4u=-6+5u | | -5v+10-7v=-4-10v | | 2x+8=3x-13 | | 8b=7b-5 | | 9-p=-9-7p | | -9c+6=-10c+9 | | (a+2/3)(5a-1/2)=0 | | -9b-10=-8b | | -7v+1=9+v | | x+71=90 | | -4n=10-6n | | 1/8x+5=11 | | 6x-(8x+8)=5x-29 | | 2x+60=9x-3 | | 2m=-12-10m | | 13-g+19=-20-5g | | 30/x-0.05=750 | | 7x-32=-74 | | 17.42+4.2p=2.9p | | 20-4q=-20+16q | | Y/5+2y/3=-4/3 | | -11f=20-16f | | 1/5q=180 | | 42=-7(z-2) | | 1200=(x+150)+x | | 7x-3(7x-1)=-11 | | -13.61+15.1c=-10.1c+19.15 | | 20-9d=-20-6d-17 | | -1/2-5/2m+5/2+2/3-(-1/2m-4/3)=0 | | -17-11w=19-14w | | (1/4)(5/6)x=75/432 |