If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2i(3-2i)+4-i=-3(3-2i)+2i
We move all terms to the left:
2i(3-2i)+4-i-(-3(3-2i)+2i)=0
We add all the numbers together, and all the variables
2i(-2i+3)-i-(-3(-2i+3)+2i)+4=0
We add all the numbers together, and all the variables
-1i+2i(-2i+3)-(-3(-2i+3)+2i)+4=0
We multiply parentheses
-4i^2-1i+6i-(-3(-2i+3)+2i)+4=0
We calculate terms in parentheses: -(-3(-2i+3)+2i), so:We add all the numbers together, and all the variables
-3(-2i+3)+2i
We add all the numbers together, and all the variables
2i-3(-2i+3)
We multiply parentheses
2i+6i-9
We add all the numbers together, and all the variables
8i-9
Back to the equation:
-(8i-9)
-4i^2+5i-(8i-9)+4=0
We get rid of parentheses
-4i^2+5i-8i+9+4=0
We add all the numbers together, and all the variables
-4i^2-3i+13=0
a = -4; b = -3; c = +13;
Δ = b2-4ac
Δ = -32-4·(-4)·13
Δ = 217
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$i_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$i_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$i_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-3)-\sqrt{217}}{2*-4}=\frac{3-\sqrt{217}}{-8} $$i_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-3)+\sqrt{217}}{2*-4}=\frac{3+\sqrt{217}}{-8} $
| 5–2f=3 | | -×^2=8x | | 8+w=4 | | 1x=729-9 | | -10+x=-19 | | 2/3=h/21 | | 8p^2+23p-3=0 | | 2(1+5x)=5(2x–1) | | 4. 2(1+5x)=5(2x–1) | | 144=18n | | 6–2u=4 | | y(1)=5 | | 2i(3-2i)+4-i=-3(3-2i)2i | | 2q–2q+q=18 | | 4x+8=17.2+5x | | 16m+4m–20m+3m–3=15 | | 13x-10=2(15)+12 | | z+3.7=8.9 | | 4x+8=17.2 | | n+17=4n-8 | | 61x+20x-20x=350+20x-20x | | 2(x12)-2x=3(x-2) | | 8x+32=4(x+5) | | ?x?x?=504 | | 700+1x=14 | | -5(4)+2y-1=3 | | y=-1/2*181.5 | | t+9=32 | | 5(x+7)=6(x-4) | | −0.55p−6=0.45p | | 7j+3j-6j=4 | | 2(6,5-4y)-4y=13 |