If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2j^2+7j+6=0
a = 2; b = 7; c = +6;
Δ = b2-4ac
Δ = 72-4·2·6
Δ = 1
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$j_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$j_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1}=1$$j_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(7)-1}{2*2}=\frac{-8}{4} =-2 $$j_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(7)+1}{2*2}=\frac{-6}{4} =-1+1/2 $
| -20=2(y+2)+2y | | P(x)=2x+4x+9 | | 4(y-862)-221=-197 | | 6x=2x/7-1 | | 5y+6=3y+10 | | -20=4(u-3)-2u | | 11y-19+7y+1=180 | | 5z+96=180 | | 2(x-5)=9-3x+6+8+3x+17 | | 3n^2+16n+12=0 | | -x-15=0x-4-15 | | x+6/25=1 | | 2.5x(x-10)+(x-40)+x=360 | | -10-a=-18 | | 13-4x=2(x+5)-8x | | X1/3=x-3 | | 0+3y=-5 | | -7(x+4)-13=20+2 | | X+18=6x+28 | | 7n+23=2n+23 | | f/5+8=16 | | 1.2+4x=3.5+2x | | 20y-26=14 | | 9+5m-m=3 | | 9(6)*3(4)=3k | | p+3/5=4/11 | | 7.5x=30 | | -9(n-956)=-4 | | 6=-6u+18 | | 46+8x-23=7 | | (X1/3)3=x | | 5(3-4a)+4=19+6a |