If it's not what You are looking for type in the equation solver your own equation and let us solve it.
Simplifying 2k(-3k + 4) + 6(k + k + 10) = k(4k + 8) + -2k(2k + 5) Reorder the terms: 2k(4 + -3k) + 6(k + k + 10) = k(4k + 8) + -2k(2k + 5) (4 * 2k + -3k * 2k) + 6(k + k + 10) = k(4k + 8) + -2k(2k + 5) (8k + -6k2) + 6(k + k + 10) = k(4k + 8) + -2k(2k + 5) Reorder the terms: 8k + -6k2 + 6(10 + k + k) = k(4k + 8) + -2k(2k + 5) Combine like terms: k + k = 2k 8k + -6k2 + 6(10 + 2k) = k(4k + 8) + -2k(2k + 5) 8k + -6k2 + (10 * 6 + 2k * 6) = k(4k + 8) + -2k(2k + 5) 8k + -6k2 + (60 + 12k) = k(4k + 8) + -2k(2k + 5) Reorder the terms: 60 + 8k + 12k + -6k2 = k(4k + 8) + -2k(2k + 5) Combine like terms: 8k + 12k = 20k 60 + 20k + -6k2 = k(4k + 8) + -2k(2k + 5) Reorder the terms: 60 + 20k + -6k2 = k(8 + 4k) + -2k(2k + 5) 60 + 20k + -6k2 = (8 * k + 4k * k) + -2k(2k + 5) 60 + 20k + -6k2 = (8k + 4k2) + -2k(2k + 5) Reorder the terms: 60 + 20k + -6k2 = 8k + 4k2 + -2k(5 + 2k) 60 + 20k + -6k2 = 8k + 4k2 + (5 * -2k + 2k * -2k) 60 + 20k + -6k2 = 8k + 4k2 + (-10k + -4k2) Reorder the terms: 60 + 20k + -6k2 = 8k + -10k + 4k2 + -4k2 Combine like terms: 8k + -10k = -2k 60 + 20k + -6k2 = -2k + 4k2 + -4k2 Combine like terms: 4k2 + -4k2 = 0 60 + 20k + -6k2 = -2k + 0 60 + 20k + -6k2 = -2k Solving 60 + 20k + -6k2 = -2k Solving for variable 'k'. Reorder the terms: 60 + 20k + 2k + -6k2 = -2k + 2k Combine like terms: 20k + 2k = 22k 60 + 22k + -6k2 = -2k + 2k Combine like terms: -2k + 2k = 0 60 + 22k + -6k2 = 0 Factor out the Greatest Common Factor (GCF), '2'. 2(30 + 11k + -3k2) = 0 Ignore the factor 2.Subproblem 1
Set the factor '(30 + 11k + -3k2)' equal to zero and attempt to solve: Simplifying 30 + 11k + -3k2 = 0 Solving 30 + 11k + -3k2 = 0 Begin completing the square. Divide all terms by -3 the coefficient of the squared term: Divide each side by '-3'. -10 + -3.666666667k + k2 = 0 Move the constant term to the right: Add '10' to each side of the equation. -10 + -3.666666667k + 10 + k2 = 0 + 10 Reorder the terms: -10 + 10 + -3.666666667k + k2 = 0 + 10 Combine like terms: -10 + 10 = 0 0 + -3.666666667k + k2 = 0 + 10 -3.666666667k + k2 = 0 + 10 Combine like terms: 0 + 10 = 10 -3.666666667k + k2 = 10 The k term is -3.666666667k. Take half its coefficient (-1.833333334). Square it (3.361111114) and add it to both sides. Add '3.361111114' to each side of the equation. -3.666666667k + 3.361111114 + k2 = 10 + 3.361111114 Reorder the terms: 3.361111114 + -3.666666667k + k2 = 10 + 3.361111114 Combine like terms: 10 + 3.361111114 = 13.361111114 3.361111114 + -3.666666667k + k2 = 13.361111114 Factor a perfect square on the left side: (k + -1.833333334)(k + -1.833333334) = 13.361111114 Calculate the square root of the right side: 3.655285367 Break this problem into two subproblems by setting (k + -1.833333334) equal to 3.655285367 and -3.655285367.Subproblem 1
k + -1.833333334 = 3.655285367 Simplifying k + -1.833333334 = 3.655285367 Reorder the terms: -1.833333334 + k = 3.655285367 Solving -1.833333334 + k = 3.655285367 Solving for variable 'k'. Move all terms containing k to the left, all other terms to the right. Add '1.833333334' to each side of the equation. -1.833333334 + 1.833333334 + k = 3.655285367 + 1.833333334 Combine like terms: -1.833333334 + 1.833333334 = 0.000000000 0.000000000 + k = 3.655285367 + 1.833333334 k = 3.655285367 + 1.833333334 Combine like terms: 3.655285367 + 1.833333334 = 5.488618701 k = 5.488618701 Simplifying k = 5.488618701Subproblem 2
k + -1.833333334 = -3.655285367 Simplifying k + -1.833333334 = -3.655285367 Reorder the terms: -1.833333334 + k = -3.655285367 Solving -1.833333334 + k = -3.655285367 Solving for variable 'k'. Move all terms containing k to the left, all other terms to the right. Add '1.833333334' to each side of the equation. -1.833333334 + 1.833333334 + k = -3.655285367 + 1.833333334 Combine like terms: -1.833333334 + 1.833333334 = 0.000000000 0.000000000 + k = -3.655285367 + 1.833333334 k = -3.655285367 + 1.833333334 Combine like terms: -3.655285367 + 1.833333334 = -1.821952033 k = -1.821952033 Simplifying k = -1.821952033Solution
The solution to the problem is based on the solutions from the subproblems. k = {5.488618701, -1.821952033}Solution
k = {5.488618701, -1.821952033}
| s=Zr-5ztq | | (2x-7)+(4x+3)=12 | | 20=8+4(12+4X) | | 81x^2-169y^2=0 | | 5/8-4(3a=7)=-21 | | 6(x-2)-(3x+1)=4(3+2) | | -4.2=1.9x+23.1 | | -3(7/2m+1)=81 | | -4x^2-7x+3=0 | | 39=(x+5)+x | | 3/4x3x | | 3/x-2=8x | | 17/3v=34/9 | | -5n+3n= | | 13x=127 | | 321=1(4n+1) | | 34=2x+5x+6 | | 19=m/20 | | 6+4n=66 | | 2a+3a+4a=a | | -7(b+8)=-7(11b-12) | | 2(x-7.50)= | | 8a-2(a-7)=68 | | -r+4t+10t+8r= | | X/8=-5/4 | | -5n-3n=70+6 | | -2x-7=-3(1+2x) | | 45/8a=15/2 | | (x^2-3x+11)-(5x+3)= | | (5y+4x)dy+(4y-8x^3)dx=0 | | 40=2x-6 | | 13=3/8f-2 |