If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2k(k+45)=180
We move all terms to the left:
2k(k+45)-(180)=0
We multiply parentheses
2k^2+90k-180=0
a = 2; b = 90; c = -180;
Δ = b2-4ac
Δ = 902-4·2·(-180)
Δ = 9540
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{9540}=\sqrt{36*265}=\sqrt{36}*\sqrt{265}=6\sqrt{265}$$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(90)-6\sqrt{265}}{2*2}=\frac{-90-6\sqrt{265}}{4} $$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(90)+6\sqrt{265}}{2*2}=\frac{-90+6\sqrt{265}}{4} $
| 6-8=y | | 47-7x=17+8x | | u^2-14u+40=0 | | r/6+91=100 | | -6x^2-31x-39=0 | | -26+x=-4(x+4) | | V+3/4v-3/5=-1/4(v+6/5) | | 15v=8v+49 | | |5a+4|=|6a-10| | | 348=6v+6(6v+9) | | 2+q/4=-1 | | 6x^2+31x+39=0 | | 15+13=24x=23 | | —15+h3=10 | | -8-3k=3k+2 | | 3(x)+12(5)(x)=22 | | |5x+4|−5=14 | | 2x^-5x-2=0 | | 2x+43=(3)(15) | | 32-6x=4 | | .7-6(c-1)+3(3-4c)=7+(7c-4) | | —15+h/3=10 | | -32=-n-4(8-6n) | | -28+7x-12=4.8x+26 | | 10/15+9x/15=31/15 | | 19=d/4+16 | | -6x-8=37-x | | (5y-5)=180 | | 3(3-4x)-2=9-3x | | (1/81)x^2+(2/9)x-8=0 | | (x+7)^2+13(x+7)+36=0 | | (x*x)+0.46x-0.12=0 |