If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2k^2+6k-2=0
a = 2; b = 6; c = -2;
Δ = b2-4ac
Δ = 62-4·2·(-2)
Δ = 52
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{52}=\sqrt{4*13}=\sqrt{4}*\sqrt{13}=2\sqrt{13}$$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(6)-2\sqrt{13}}{2*2}=\frac{-6-2\sqrt{13}}{4} $$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(6)+2\sqrt{13}}{2*2}=\frac{-6+2\sqrt{13}}{4} $
| 4(-2x-1)=-10 | | 5x+2=1x+2.5 | | 6n+8=-6-3+7-8 | | 3/2=4h+2/3 | | 11/u=5/7 | | 26(x+3)=26x+3 | | 3x1/6=1/6x1/6x1/6 | | 9-6(2x-1)=8x+7 | | 6x=2.5x-4 | | -10+-t=-4 | | x^2=2/27 | | n-0.05+0.75=15.5 | | 6(3x+2)=-30 | | 7x+3×-8=2(5x-4) | | 3x-1=2.5x+2 | | 73.2=6(m=3.3) | | 6(-3x+2)=30 | | 3(y+4)-5(2y-5)=37 | | 10t²-29t=-10 | | 4^(5x-4)=37 | | 4^5x-4=37 | | 4.1(m+4)-2.1m=-4 | | -s+18=7 | | -1-2x=16+5x+1+2x | | 4.1(m+4)-2.1m=-6 | | -(-8x-2)+3x=-64 | | |2X^2+15x-8=0| | | 3^2x-4=243 | | 36=3/5x-1 | | 4x-3=69 | | 499.70=38(x=2.15) | | 6.4=n-3.2=-0.4 |