If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2k^2-10k+12=0
a = 2; b = -10; c = +12;
Δ = b2-4ac
Δ = -102-4·2·12
Δ = 4
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{4}=2$$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-10)-2}{2*2}=\frac{8}{4} =2 $$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-10)+2}{2*2}=\frac{12}{4} =3 $
| (X^2)+10x+(5x+36)=360 | | 4c-6=13 | | 55x=704 | | t+8=9.5 | | -5x+12+3x=19-9 | | z(z+1)=5(z+1) | | 5x-2x+4=3x+5-1 | | (2y-14)(y2+4y-21)=0 | | -5x+10=40-6x | | 60=10b | | 250t=50(t+8) | | 314=1/3π25h | | (4x+10)=(3x+8) | | 2x+10+5x=12x-35 | | -8x+10=40-6x | | 9x-6=15x+7 | | 3x+30+3x+30+4x+30=180 | | 24-4y=-16 | | 2x+109=8x-5 | | 40+5x=6x-10 | | x+12=2x-27 | | f/6=6 | | 180-((2x)+(3x)=115) | | y(y-3)=2(1-y) | | 2(x-10=x) | | 3x+23=2x+35 | | 5x-817=34 | | 2(x-10=x | | 6x-9=7x+15 | | X2-20x-736=0 | | z+(22)=-95 | | 6.49s+8.42=27.79 |