If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2k^2-2k-12=0
a = 2; b = -2; c = -12;
Δ = b2-4ac
Δ = -22-4·2·(-12)
Δ = 100
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{100}=10$$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-2)-10}{2*2}=\frac{-8}{4} =-2 $$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-2)+10}{2*2}=\frac{12}{4} =3 $
| 3x-57=48 | | f^2-4f=39 | | (8)^0.5x^2-2x+3=0 | | 4x/2x+7/2x=0 | | 4x+7/2x=0 | | -77(3+t)=4(2t+6) | | (4x+7)/2x=0 | | 2(5x+9)=49 | | (x²+60)+(8x+36)=180 | | (x^2+60)+(8x+36)=180 | | 6x+20+x^2=180 | | 180-x=((2x-4)+28) | | 21=-4+u/5 | | x2+14x-15=0 | | d=9920/3.14 | | x^2=160+6x | | m2+10m-39=0 | | d=9920/22/7 | | 6b2-12b-90=0 | | (x+21)+(2x+21)=90 | | 9x=11=74 | | 1.4+2/5t=3/15t-0.8 | | 2n2+9n-81=0 | | 4x+3(-13+5x)=18 | | 6/20=60/x | | 4×3(7x-19)=18 | | 6/20=x/60 | | 10(z−9)=-49 | | 4p2+10p-66=0 | | 3x—5=-11 | | 3x2-12x+12=0 | | 2p/9=8/3 |