If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2k^2=6
We move all terms to the left:
2k^2-(6)=0
a = 2; b = 0; c = -6;
Δ = b2-4ac
Δ = 02-4·2·(-6)
Δ = 48
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{48}=\sqrt{16*3}=\sqrt{16}*\sqrt{3}=4\sqrt{3}$$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{3}}{2*2}=\frac{0-4\sqrt{3}}{4} =-\frac{4\sqrt{3}}{4} =-\sqrt{3} $$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{3}}{2*2}=\frac{0+4\sqrt{3}}{4} =\frac{4\sqrt{3}}{4} =\sqrt{3} $
| -8=3m | | (6x+8)=(5x-8) | | 6+3t=-9 | | 2s+7=8 | | 4s+7=8 | | 2w−-2=10 | | 9=11-4a | | 4−2y=-2 | | 31/10s= | | 2y−3=3 | | (1/2)-(1/6n^2)=0 | | 40-3x=30 | | x-1=√(0.480)x | | 2n+n=30 | | x+24=1000 | | -10+9=m-5 | | 7x^2+11x-990=0 | | 35x^2-31x=24 | | 4^3x-11=1/16 | | 4^3x-11=16 | | 3^4x-7=243 | | 35x^2-24x=31 | | 0.14(y-2)+0.16y=0.20y-0.9 | | -2+4|4x-4|=30 | | -2+4|4x−4|=30 | | -8k=3 | | 7^3x+6=22 | | −2+4|4x−4|=30 | | 2p=-32 | | 7+8x=2x-29= | | 11/15=w−8/15 | | 9x+118=4x^2+80x+400 |