If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2m(m-24)-25=0
We multiply parentheses
2m^2-48m-25=0
a = 2; b = -48; c = -25;
Δ = b2-4ac
Δ = -482-4·2·(-25)
Δ = 2504
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2504}=\sqrt{4*626}=\sqrt{4}*\sqrt{626}=2\sqrt{626}$$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-48)-2\sqrt{626}}{2*2}=\frac{48-2\sqrt{626}}{4} $$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-48)+2\sqrt{626}}{2*2}=\frac{48+2\sqrt{626}}{4} $
| x+18+18+18+-18+9=81^2 | | 15u^2-29u+12=0 | | 15u^2-29u+12=- | | 1+-2f=5 | | 16(4-3x)=96(-x2+1) | | s/3-10=-9 | | 4q^2–12q+9=0 | | 600=x+7x | | 2b-54=-b+21 | | x+18^2+18^2+18^2+18^2+9^2=81^2 | | q/30+15=18 | | -7w+6w+5=-8 | | 50=h/10+47 | | u/2+-7=-6 | | x+18^2+18^2+18^2+9^2=81^2 | | 6x+-x+7=36 | | 3b-12=5 | | 4x-6+7x=-11x+3 | | 6q-4=32 | | 50=21+2w | | 2z-8=1 | | 3b-21=7 | | 10v+20=3 | | 10+18x=90 | | ⅘x-1/10=3/10 | | 42+10x=90 | | x²-6=30 | | |3y-11|=|19-3y| | | X-20+2x+20=180 | | 3y-15=4 | | k/3+8=9 | | 1/2(x+2)+3x=-1 |