If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2m^2+13m+20=0
a = 2; b = 13; c = +20;
Δ = b2-4ac
Δ = 132-4·2·20
Δ = 9
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{9}=3$$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(13)-3}{2*2}=\frac{-16}{4} =-4 $$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(13)+3}{2*2}=\frac{-10}{4} =-2+1/2 $
| (1)/(9)=(5)/(6)-(m)/(3) | | y^2=3y+18 | | T(x)=9x+10;x=-1/6 | | 4x+8-1=0 | | R(x)=8/9x-17;R(x)=15 | | G(x)=6x2-234x5941 | | 54=18d | | 17x-34+1=0 | | 12x2-8x-180=0 | | a=2+0.2/8 | | (3x+21)^((4)/(3))+9=90 | | 4/13-a=-9/13 | | 6a-4-8a=20 | | 3^x=245 | | 2a-5=4-a | | 21.8=8a+5.6 | | –2z+28=36 | | (10^2)^x=50 | | 3(a+4)=2(2-2a) | | c+6-20=0 | | 5.7d+5.4=6.3d+1.2 | | 6x=-6-7x-20 | | 201=x | | 20(5x-7)-(3x-5)=2x-12 | | 2x+1=3x-4=x+1 | | 220=4x-32 | | 2x-3+35=180 | | ½x+6=7-½x | | 2(x-6)=3-(15-2x) | | 5x+7=3x-11=7x-26 | | 4x+1412x+6=180 | | Z,z+4=2z–3 |