If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2m^2+2m-12=0
a = 2; b = 2; c = -12;
Δ = b2-4ac
Δ = 22-4·2·(-12)
Δ = 100
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{100}=10$$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(2)-10}{2*2}=\frac{-12}{4} =-3 $$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(2)+10}{2*2}=\frac{8}{4} =2 $
| 45+1.5y=-1.5 | | 5^x-3=27 | | x÷9=17 | | 10x+7=4x−11 | | 7.9a+12=75.2 | | 5x/6+8=4x-163 | | 3x+31=5x-7 | | 2y/3=5y-91 | | w+5.4=12.5 | | x/2+4=34 | | 3x+2/2=31 | | 9/10x-7/10=8 | | 7(4w+7)/4=-3 | | 5y/6=5y-225 | | 2x^2+1=99 | | m=3.3=9.3 | | 3n/4=5n-102 | | -2=18-11x | | 3x-2x+7=3 | | 6p-243=3p/5 | | 0.40x+0.20(100-x)=26 | | 0.8+x=0.7x+1.4 | | p+33=21 | | 3d=93 | | H(t)=-4.9t^2+30(5)+400 | | 9d=153 | | 32-5x=-32-10x | | 0.40x+0.20(100-x)=31 | | 4x^2-x-95=0 | | 9n=225 | | z+36=4 | | 3n^2+5n-418=0 |