If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2m^2-12m=0
a = 2; b = -12; c = 0;
Δ = b2-4ac
Δ = -122-4·2·0
Δ = 144
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{144}=12$$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-12)-12}{2*2}=\frac{0}{4} =0 $$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-12)+12}{2*2}=\frac{24}{4} =6 $
| 15x(2x+2)=10(3x+4) | | X3-1=x2+1 | | R(x)=3x,C(x)-0.01x^2+0.4x+6 | | -4.2x31.5=65.1 | | 2x+3x=9x | | 3(n-5)+2n=5n-15 | | R(x)=6x,C(x)=0.01x^2+0.4x+ | | 5b-3=(b+7)+3b | | -5.5x+0.56=-1.46 | | d/23=26 | | 3c-2=5 | | x2+4x+18=0 | | (x-36)+(.3x)=180 | | -515=h-664 | | T2=n2+T2+2n+9 | | X+1/9=2x/3x+6 | | 3×7=21x=33 | | (x-36)+(1/3x)=180 | | 5=t+68/21 | | T2=T2=2n=9 | | 3(2y+7)=18 | | 45.5=4/5x+10 | | -4(2x+7)=18 | | 24(j-951)=912 | | 360=20(w+15) | | 3x+5x-12+5x+19=180 | | a=36+72/2 | | 21(b-968)=546 | | 7x-3(x-9)=2(x-4)+3 | | 21(b −968) =546 | | x+2+15+4x-10=180 | | x+1/3x=28 |