If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2m^2-4m=3
We move all terms to the left:
2m^2-4m-(3)=0
a = 2; b = -4; c = -3;
Δ = b2-4ac
Δ = -42-4·2·(-3)
Δ = 40
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{40}=\sqrt{4*10}=\sqrt{4}*\sqrt{10}=2\sqrt{10}$$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-4)-2\sqrt{10}}{2*2}=\frac{4-2\sqrt{10}}{4} $$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-4)+2\sqrt{10}}{2*2}=\frac{4+2\sqrt{10}}{4} $
| 2x-3(2-3x)=3(x-3)-37 | | 20.4=x+4 | | -2(1-4x)=3x=8 | | R(x)=-4x^2+1320x | | H=-16^2+288t+8 | | 5x-8+7=4 | | 6a–4=5a–8 | | 6t/9-22t=60 | | 3x-9=12x= | | 4/5y=7/15-y/15+10/15 | | R=m | | 16000+50x+0,2x^2=100000 | | 2e=6.8 | | 1=n-2+1 | | 160000+50x+0,2x^2=100000 | | 2(3x-1)-3(2x-1)=1 | | 6b2+4b–2=0 | | 9(x+2)=9x+2 | | 266x=244 | | (2k-9)(k+2)=0 | | 120-4p=92 | | -7x+5(3x)=64 | | 7y+2/5=6y-5=11 | | (e+5)⋅4=28 | | (e+5)⋅4=28(e+5)⋅4=28 | | 5(x-6)-5=1x+3+4x | | 5x−2.5+6x−3=¯¯¯¯(2x−1) | | n/12+10=143 | | 8v-4=12v-8 | | y/11-5=-1=44 | | 12a-8=16a-16 | | 2x+4.5x-22.8=120.2 |