If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2m^2-5m=0
a = 2; b = -5; c = 0;
Δ = b2-4ac
Δ = -52-4·2·0
Δ = 25
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{25}=5$$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-5)-5}{2*2}=\frac{0}{4} =0 $$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-5)+5}{2*2}=\frac{10}{4} =2+1/2 $
| 11x-12x=x+138 | | 9x+3=18x | | (c+9)*4=4c+9*4 | | x-9=3÷2(x-4) | | 2x-43=3x+22 | | 2x-43=3x+2 | | 8(2x-3)=x+6 | | 2^((x^2)-3)=64 | | 2^(x^2-3)=64 | | -80+3y=-7y | | 3*(3x+3)−5x+1=26 | | 3(3x+3)−5x+1=26 | | 2(−3x−2)+4x−1=15 | | 3x-10=80-x | | 3^x^2=134 | | 10-(1/t)-(9/t^2)=0 | | 5+2+2x=10+x+x | | 5(2+5x)-4=27+4x | | 17x-12x=7x-15 | | 17=r/3=28 | | 7x-11=7x | | 3x^2/3+5=53 | | 0=4+24.5x-4.9x^2 | | u^2+22u+40=0 | | y^2+22y+40=0 | | 7(3x+6)-4(3+5x)=13+× | | X=134x11 | | 10=e+3 | | 1=1.3*x | | 3u^2+13u+50=0 | | x2+0.1x+-0.0059=0 | | 3u^2+13u+60=0 |