If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2m^2-6m+2=0
a = 2; b = -6; c = +2;
Δ = b2-4ac
Δ = -62-4·2·2
Δ = 20
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{20}=\sqrt{4*5}=\sqrt{4}*\sqrt{5}=2\sqrt{5}$$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-6)-2\sqrt{5}}{2*2}=\frac{6-2\sqrt{5}}{4} $$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-6)+2\sqrt{5}}{2*2}=\frac{6+2\sqrt{5}}{4} $
| 6x+126=180 | | -7x+1=-3x-10 | | -8x-(3x+)=4-x | | -2(6y-1)+5y=3(y+2) | | -5x+1=-6x+4 | | 2.50+0.32x=10.82 | | 5.50+0.25q=13 | | -5(-2w+5)-4w=2(w-3)-1 | | 5(y+11)=180 | | 2/3x=9-2(-1/3x+3) | | (0.8x)-72=0 | | (-2,8x)+700=0 | | 2(x-3)=-x+2 | | 2-7a=-33 | | /x-9=6 | | 30-4b=3+b | | (79-2x)=(90-3x) | | {c}{-3}=-2 | | 1-(3x+2)+1=1-(2x-5) | | 16x+20=22x=8 | | (2x-30)+82=x | | 3f-9f=14f+2f | | 2(3x+1)+1=3-(2x-4) | | 2(u-5)=-4u+8 | | x=-9-15 | | 17x=8x | | 2-v/3=(-10) | | 17x-7=14x+8 | | 2(u-5)=-4u=8 | | p/12=-7 | | 17x-7=14x=8 | | -w-(-3)=(-53) |