If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2n^2+11n+12=0
a = 2; b = 11; c = +12;
Δ = b2-4ac
Δ = 112-4·2·12
Δ = 25
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{25}=5$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(11)-5}{2*2}=\frac{-16}{4} =-4 $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(11)+5}{2*2}=\frac{-6}{4} =-1+1/2 $
| 6×+7y=4×+4y | | 7(x+14)=133 | | 3(4j+5)=2(10+5j) | | 9x-26=65 | | 4{3x-11}=64 | | -14.4=-0.6d | | 1(x+11)=4 | | 52-7x=38-12x | | 2(4x+6)=-27+31 | | x^2+8x=192 | | 10(x+8)-11=29 | | 1420=2.5x | | 10x-84=26+5x | | 4(a-3)2=36 | | 7(x+14)=147 | | 〖10a〗^2+7a-12=0 | | 5-3x=8x+1 | | m=8+5m | | -x+4=-4+3x | | 6(m-4)=16-2m | | 6(3x+16)=24 | | 2(x+14)+6=54 | | 4b+2=54 | | 16x-13+83=263 | | 21(2−x)+12x=44;x= | | 7t+7=90 | | n2=6n | | 7t+7+9t-11=360 | | u/5 −2=0 | | v.2=-6 | | u/5−2=0 | | 7t+7+9t-11=90 |