If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2n^2+12n-10=0
a = 2; b = 12; c = -10;
Δ = b2-4ac
Δ = 122-4·2·(-10)
Δ = 224
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{224}=\sqrt{16*14}=\sqrt{16}*\sqrt{14}=4\sqrt{14}$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(12)-4\sqrt{14}}{2*2}=\frac{-12-4\sqrt{14}}{4} $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(12)+4\sqrt{14}}{2*2}=\frac{-12+4\sqrt{14}}{4} $
| r/11=13 | | -7x(-42)=144 | | 2h-20=32 | | r11=13 | | 4x-16+8x+4=180 | | 5x2-10+6=0 | | -7x(+42)=14 | | 3x+17+4x=2(4x-3) | | b+27=10b | | 6x+16=12x−26 | | 20=4+4m | | 5(2)x+4=99 | | 9=3d-9 | | -7x(42)=14 | | -7x(42)=42 | | 9=3d−9 | | x+11÷2=14 | | 6x+8=9(x+7) | | 6x+42=66 | | x+11÷4=14 | | x3=118 | | 3.2(x+2)=5.9x-11-2.4x | | x+10+3x+28=90 | | 82=5(3)x | | 5y+3+7y-1+68-2.4y+16+4(68-2.4y)+2=360 | | 6x3.14+5x=3.14 | | 4x+5=2x+28 | | 3z-10=-11 | | 2+28=16x | | 10b-13=b | | 14p=12 | | 8−3k=2 |