If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2n^2+30n-4608=0
a = 2; b = 30; c = -4608;
Δ = b2-4ac
Δ = 302-4·2·(-4608)
Δ = 37764
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{37764}=\sqrt{36*1049}=\sqrt{36}*\sqrt{1049}=6\sqrt{1049}$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(30)-6\sqrt{1049}}{2*2}=\frac{-30-6\sqrt{1049}}{4} $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(30)+6\sqrt{1049}}{2*2}=\frac{-30+6\sqrt{1049}}{4} $
| 2x/5=-25 | | 1+2x=3(2x+4)-5(x-2) | | 4(3x-3)=31 | | 5b-3=15 | | 8/52=x/30 | | 2x+6x-4=4x=24 | | T-4(t-8)+7(3t+4)=0 | | (-4)+(-9)=a0 | | 2(.5n+3n)=2.5n+27 | | 3y-5+y+27=8+5y+22-3y | | 2(.5n+3n)=2.5n=27 | | 3(-y+3)+y=-3 | | x/14=11/35 | | 4+6p-3=9p+4-2p | | 1500-2x=x | | 1500+2x=x | | 3^x-3=40-9(3^x) | | 4x/3+7=50 | | 3q/2=2/3 | | 77-14z=6z+17 | | X+25+9x+10x=180 | | 21-6x=-69 | | /2x-11=7x+19 | | -4x+6=1/2x-3 | | x^2-240x+900=0 | | 8k+18=31-5k | | 6b-2=14-2b | | 4t+2t+t+t^2= | | x*2-2x-48=0 | | 31+19y=14y+66 | | 76x=-14 | | z/16=4 |