If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2p+3-(5p-2)/6p+11=2/17
We move all terms to the left:
2p+3-(5p-2)/6p+11-(2/17)=0
Domain of the equation: 6p!=0We add all the numbers together, and all the variables
p!=0/6
p!=0
p∈R
2p-(5p-2)/6p+3+11-(+2/17)=0
We add all the numbers together, and all the variables
2p-(5p-2)/6p+14-(+2/17)=0
We get rid of parentheses
2p-(5p-2)/6p+14-2/17=0
We calculate fractions
2p+(-85p+34)/102p+(-12p)/102p+14=0
We multiply all the terms by the denominator
2p*102p+(-85p+34)+(-12p)+14*102p=0
Wy multiply elements
204p^2+(-85p+34)+(-12p)+1428p=0
We get rid of parentheses
204p^2-85p-12p+1428p+34=0
We add all the numbers together, and all the variables
204p^2+1331p+34=0
a = 204; b = 1331; c = +34;
Δ = b2-4ac
Δ = 13312-4·204·34
Δ = 1743817
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1331)-\sqrt{1743817}}{2*204}=\frac{-1331-\sqrt{1743817}}{408} $$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1331)+\sqrt{1743817}}{2*204}=\frac{-1331+\sqrt{1743817}}{408} $
| x=5/6=11/3 | | -5/3u-7=5/2u-7/3 | | -2.5+p=110–4p | | 2x+7=5x−23. | | Y=-2(x+4)2+5 | | Y=x2+3x-2 | | Y=7(x-5)2-4 | | 5(x-12)=9x-(2x+4) | | Y=2x2-4x+1 | | -9c+12=30 | | Y=x2-5x-6 | | Y=2x2-7x+5 | | (x/3)+2=1/3 | | a-85+641=650 | | 5x-(2x-10)=19 | | 2x-5÷5-3x-4÷3+2x+3÷6-x+5÷5=24 | | y/5+19=17 | | x+1=2x*2 | | 140.50x=110.75x | | -3x-63=x+25= | | 9x+18=12×3x | | 3.80/x=10.8/810 | | 4=3-(1-r3) | | 6x-(2x+2)=6 | | a³+12a-20=0 | | 2(w-1)=5w+25 | | 6x=5+22= | | x+1/5=5/6x+5/10 | | x+1/5=5/6x+510 | | 5(x+4)=6(2x-6) | | 7-3x=3x+37 | | 14.8x+3x-4x+11-12=9x-11x+11-14 |