2q2+10q+12=q2

Simple and best practice solution for 2q2+10q+12=q2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 2q2+10q+12=q2 equation:



2q^2+10q+12=q2
We move all terms to the left:
2q^2+10q+12-(q2)=0
We add all the numbers together, and all the variables
q^2+10q+12=0
a = 1; b = 10; c = +12;
Δ = b2-4ac
Δ = 102-4·1·12
Δ = 52
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{52}=\sqrt{4*13}=\sqrt{4}*\sqrt{13}=2\sqrt{13}$
$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(10)-2\sqrt{13}}{2*1}=\frac{-10-2\sqrt{13}}{2} $
$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(10)+2\sqrt{13}}{2*1}=\frac{-10+2\sqrt{13}}{2} $

See similar equations:

| -2(x-2)=10+x | | Z/3=z/8+7 | | -2(2-x)-4(x-3)=0 | | 18-x÷15=15 | | -12/7=-6v | | 7r-5r+8=9r+8-r | | 5(2x-2)+2x=18+6 | | (1/2)x-3+(1/3)(x+5)=-1 | | -11x-19=11-6x | | 6/5+1/8t=2 | | 5z^2+3z+1=0 | | 7/4u=-42 | | a-10/10=7/4 | | 40+5x=15x | | 4/5=2x25 | | 4+2n-1=9n+5-6n | | 1/8x+-1/9x+1/72x=8 | | 245-9b/8b=5b | | X^2+4x=276 | | -6w/7=-30 | | 245-9/8b=5b | | 2(4x-8)+5=3+2 | | 3x^2+9x=5 | | r/5+95=4r | | 2/3x+-7/12x=4 | | 2/5=1/5(x-1/4) | | 3x2-16x+13=-4 | | 2/3x=7/12x=4 | | 10-(x-9)=4(x+5) | | |5y+2|+6=4 | | 49=40+c | | -3.5+x/2=-1.05 |

Equations solver categories