If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2q^2+14q-5=0
a = 2; b = 14; c = -5;
Δ = b2-4ac
Δ = 142-4·2·(-5)
Δ = 236
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{236}=\sqrt{4*59}=\sqrt{4}*\sqrt{59}=2\sqrt{59}$$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(14)-2\sqrt{59}}{2*2}=\frac{-14-2\sqrt{59}}{4} $$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(14)+2\sqrt{59}}{2*2}=\frac{-14+2\sqrt{59}}{4} $
| x2+8x=-7 | | 5t-7=2t+5 | | x2+20x+97.5=0 | | 5x-33-x=3+33-x | | 20(b-9)=-60 | | x2+12x+36=-25 | | x(x+8)=-4x^2-9 | | 16p2+24p+9=27 | | 0=17+8(3+x) | | 3/5v-1/4=3/5-3/4 | | 3x+x=10+2 | | x2-2x+1=64 | | 15+0.10x=0.25x | | Y^3-3y^2+5y=5 | | x+3/x-9=0 | | 2x/3+x=14 | | 5/x=3x1/3 | | −5+2(x+5)=−5 | | x/x+4+5/x+4=2 | | 25x2-81=0 | | 14x+-41+5x-12+2x+9=180 | | (3/4)c−(1/4)c+3=7 | | 5w-13=9(w-1) | | x*(4x-27)=7 | | 0.25x-0.6=0.16 | | 3.1m-2=3-0.2m | | -18+5A/(150-3t)+A=0 | | x/x+2=3/7 | | X+36=3(x+10) | | 11.8-3.4=6(4.1-x)+0.2 | | 3x+x/2=5-x/3 | | x+4x/x-3=12/x-3 |